学术预告

您的位置: 首页 >> 学术预告 >> 正文

经济研究院2022年第17期学术例会预告

发布日期:2022-09-14   作者:    浏览次数:
时间 2022年9月15日 14:30 地点 邵逸夫科学馆东二层第六会议室

时间:2022年9月15日 14:30

地点:邵逸夫科学馆东二层第六会议室

主讲人一:王晓丹

题目:中国居民高储蓄与可容忍失业率——兼论中国政府的反危机政策

摘要:目前,围绕“中国高储蓄”研究中,存在“储蓄与可容忍失业水平关系”的缺失。本文通过理论模型,分析了储蓄与可容忍失业率之间的关系,发现高水平的储蓄更有利于保障居民失业情况下的正常消费,从而使得经济具有更强的抵御失业率升高的能力。另外,通过对中国城镇居民储蓄量及日常消费量的估计,本文证实,中国高储蓄现象长期存在使得中低收入居民累积了一定量的储蓄,具有可观的支持失业情况下日常生活消费的能力,据本文估算,至2019年,全国居民平均储蓄存量可支持失业期间消费的时长约28个月,可支持基本消费需求约40个月,其中至2012年,中低收入阶层储蓄存量对失业的支持时长已达1825个月。本文揭示了目前居民高储蓄的积极意义,即高储蓄率实际上可以一定程度上支持失业,从而使得中国具有较高的可容忍失业水平,为政府反危机提供了更大的政策空间。

主讲人二:魏啸

题目:A probabilistic formulation of the Malmquist productivity index and its estimation

摘要:In this study we propose an alternative specification of an index that measures dynamic productivity change for a set of observations. Comparing with the previous specifications of the Malmquist productivity index, in which an estimation of the production frontier is required, the proposed method directly investigates the distribution of the sample observations in adjacent periods and extract a measure of productivity change from the distributions. This specification is developed under the consideration that when a frontier estimator is required, it is only constructed based on limited observations (as for the cases of data envelopment analysis or other parametric or nonparametric frontier estimators). Hence the productivity change index defined based on these frontier estimators only measures the technology change with respect to the limited information contained in these frontier observations. If the technological change term is defined for the population, such a measure would subject to high degree of measurement error, or might fail to capture the behavior of the population itself. The proposed method would be recognized as more robust in measuring the change of productivity. A formal specification will be proposed, its properties and relation will the conventional approach will be discussed and an empirical analysis will be carried out, hopefully for the Chinese cities.